
Eur. Phys. J A 2, 29–40 (1998) THE EUROPEAN
PHYSICAL JOURNAL A
c© Springer-Verlag 1998

A consistent calculation of dispersion corrections in elastic
electron-deuteron scattering

T. Herrmann1,2,∗, R. Rosenfelder2,†

1 Fakultät f. Physik, Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
2 Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Received: 2 December 1997

Communicated by F. Lenz

Abstract. We calculate the contribution of virtual second-order excitations of the deuteron by integrating

numerically over a generalized inelastic structure function S(q1,q2, ω). This structure function, as well as

the ground state density, are evaluated analytically using the separable Yamaguchi S-wave NN -potential

which gives a fair description of low-energy deuteron properties and nuclear polarization shifts. In the static

case excellent numerical agreement is found by comparing the second-order Born results with a partial-

wave calculation. In the non-static case recoil corrections are also taken into account but only Coulomb

excitations, which should be dominant for small momentum transfers, are retained. In contrast to previous

calculations the present approach avoids uncontrolled approximations like the closure approximation or

mixing of different models for ground and excited states. We show that the closure approximation with a

fixed average excitation energy is unable to reproduce our numerical results which are found to be smaller

than in previous estimates, negative and dependent both on scattering angle and incident electron energy.

An analysis of experimental scattering cross sections at low momentum transfer is performed including

static Coulomb and dispersion corrections. In agreement with a recent analysis it is found that the Coulomb

corrections increase the charge radius by 0.012 fm whereas our dispersion corrections lead to a decrease of

only 0.003 fm. This gives a deuteron radius of (1.968 ± 0.006) fm and a charge radius of (2.130 ± 0.010)

fm.

PACS. 25.30.Bf Elastic electron scattering – 21.10.Ft Charge distribution – 21.45.+v Few-body systems

1 Introduction

There has been considerable interest recently in the pre-
cise value of the deuteron radius [1 – 7]. This is, of course,
due to the fact that the deuteron is the fundamental two-
body system in nuclear physics and its size therefore re-
lated to the NN -interaction, but also due to dramatic
improvements in laser spectroscopy of hydrogen and deu-
terium atoms which are now sensitive even to subtle nu-
clear effects [8,9]. Whereas the dominant finite-size effect
gives the desired information about the deuteron radius,
virtual excitations of the weakly bound deuteron (called
nuclear polarization) also have to be considered since they
contribute about 19 kHz to the deuteron-proton isotope
shift in the 1S − 2S transition. This has to be compared
with an experimental uncertainty which has shrunk from
? present address: Institute of Molecular Biology and Bio-

physics, ETHZ, CH-8093 Zürich, Switzerland
?? corresponding author

20 kHz in 1993 [8] to 0.15 kHz in 1997 [10]. Several the-
oretical calculations of the nuclear polarization shift in
deuterium [11 – 15] now exist which - when using realistic
NN -potentials - agree within 2 %. Efforts are also under
way to measure the deuteron radius in muonic transitions
[16] where the finite size effect is much larger. Realistic
nuclear polarization shifts in this system have been eval-
uated in [13].

In contrast, the classical method to measure nuclear
radii by elastic electron scattering experiments nearly al-
ways has neglected virtual excitations of the target, here
called dispersion corrections. The main reason for ignor-
ing them has been that no reliable calculation is available
but there is also the general belief that they are “small”.
However, Coulomb corrections, i.e. the distortion of elec-
tron waves by the static potential are also “small” for a
Z = 1-nucleus like the deuteron but a recent re-analysis
of the available scattering data [17] has shown that they
shift the deuteron charge radius deduced from electron
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scattering to a value nearly compatible with that from
laser spectroscopy. The question, how important disper-
sion corrections are, is thus a quantitative one and in view
of the on-going quest for a precise deuteron radius it is cer-
tainly worthwhile to re-examine them in elastic electron-
deuteron scattering. This will be done in the present work.

A reliable calculation of dispersion corrections is much
more demanding than the evaluation of nuclear polariza-
tion shifts. In the latter case only one number is required,
whereas in the former case an additional scattering ampli-
tude, which interferes with the dominant static amplitude,
has to be calculated. This interference depends on scatter-
ing angle and incident electron energy, and therefore it is
absolutely essential that the same nuclear model be used
both for the static and the non-static amplitude. In ad-
dition, for nuclear polarization in light nuclei, the bound
lepton can be considered as quasi-static, transferring prac-
tically zero momentum to the nucleus, whereas for disper-
sion corrections the electron is ultra-relativistic and there
is an appreciable net momentum transfer. As we will see,
this requires knowledge of a generalized structure function
of two momentum variables whereas for nuclear polariza-
tion in light nuclei one has to deal with the usual inelas-
tic structure function of one momentum variable which is
much simpler. Even in this case, however, one needs in-
formation about all excited states of the nucleus which,
in general, is not available. Therefore, further drastic ap-
proximations (like the closure approximation) are usually
applied which make the outcome unreliable and often in-
consistent. This is particularly disastrous for the interfer-
ence with the static amplitude and explains the twisted
history of calculations of dispersions corrections. Fortu-
nately the deuteron is one of the rare cases where these
structure functions can be calculated and we will not em-
ploy any of these approximations. Given the complexity
of the numerical calculation we restrict ourselves in the
following to simple, separable NN -interactions which al-
low for an analytic evaluation of the generalized structure
function. Also we consider only longitudinal excitations
which should be dominant for small scattering angles. Un-
der these kinematical conditions the main non-static con-
tributions are low-energy virtual excitations into the con-
tinuum for which the separable S-wave potentials should
give an adequate description. It is also in the small-angle
region that the radius of the deuteron is mainly deter-
mined.

2 Two-photon exchange

The theory of dispersion corrections is well developed and
we will follow the classic paper by Friar and Rosen [18].
The direct graph for two-photon exchange is shown in
Fig. 1.

Fig. 1. Direct two-photon exchange graph for dispersion cor-

rections and kinematical notations

Together with the crossed two-photon exchange diagram
it leads to the following S-matrix

S
(2)
fi = (4πe2)2

√
m2
e

εiεf V 2
(2π)4δ4(q + Pi − Pf )

×
∫

d4p

(2π)4
tµν D

µρ(q2)Dντ (q1)Tρτ (1)

where e2 = 1/137.036 is the fine-structure constant, Dµρ

the photon propagator and tµν and Tρτ are the electron
and nuclear Compton amplitudes respectivelya. The lat-
ter contains the nuclear currents and the “sea-gull” term
which we neglect in the following (in nuclear polarization
calculations it only gives a very small contribution [12]).
We use the following kinematical variables

q ≡ pi − pf = Pf − Pi = q1 + q2

q1 = pi − p, q2 = p− pf (2)

and we will work in the Coulomb gauge. Our main approx-
imation is to consider only the longitudinal part of the
interaction. This is the leading term in a 1/M -expansion
(M being the nucleon mass) of the nuclear currents

〈Pf , f |Jµ(0)|Pi, i〉 = δµ0〈f |ρ(q)|i〉+O
(

1
M

)
' δµ0Gp(q)〈f |

∑
j

exp
(
iq · r′j

)
|i〉. (3)

Here r′j is the co-ordinate of j-th proton relative to the
center-of-mass ( = r/2 in the deuteron with r being the
distance between proton and neutron) and Gp(q) the pro-
ton form factor (we neglect the neutron form factor).
Since convection and spin currents have additional factors
|q|/M compared to the charge operator this should be a
valid approximation for low momentum transfers. When
only T00 is retained in (1) the second-order S-matrix can
be written as

S
(2)
fi = i(4πe2)2

√
m2
e

εiεf V 2
(2π)4

× δ4(q + Pi − Pf )ūf (pf ) γ0 ui(pi) · TL (4)

a The Bjorken-Drell conventions are used throughout this

work
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with

TL =
∫

d3p

(2π)3

∫
dω

1
q2

1 q2
2

SL(q1,q2, ω)

×
{[

k + p · (A(+) s +A(−) q )
] 1
p2 − k2 − i0

+
[

1− p
|p| ·

(
A(+) s +A(−) q

) ]
× k̃ − k

2(k + |p | − i0)(|p |+ k̃ − i0)

}
. (5)

Here

A(±) =
1

q2s2 − (q · s )2
[
q2 (εi ± εf )− q · s (εi ∓ εf )

]
,

s = pi + pf

k(ω,p) = εi − ω +
Pi

2 − (Pi + pi − p )2

2Md
(6)

k̃(ω,p) = εf + ω +
(Pi + p− pf )2 −Pi

2

2Md
.

Note that ω is the internal excitation energy of the
deuteron, the recoil effects being contained in k, k̃ and
the energy-momentum conserving δ-function. The com-
plete nuclear information is encoded in the generalized
longitudinal structure function

SL(q1,q2, ω) = F0(q1)F0(q2)δ(ω)

+
∞∑
n6=0

δ(ω + ω0 − ωn) 〈0 | ρ(q2 ) |n〉 〈n | ρ(q1 ) | 0〉︸ ︷︷ ︸
=:Sinelastic

L

. (7)

As usual its elastic part is fully determined by the elas-
tic form factor F0(q). Friar and Rosen [18] have neglected
the second term in the curly bracket of (5) since it is sup-
pressed approximately by a factor ω/εi. In our calculation
we easily can keep this term, although it will turn to make
only a small contribution.

We now can work out the cross section up to order
e6 from the interference of Eq. (4) with the first-order S-
matrix

S
(1)
fi = i Z (4πe2)

√
m2
e

εiεf V 2
(2π)4 δ(4)(q + Pi − Pf )

× ūf (pf ) γ0 ui(pi)
F0(q)
q2

(8)

of a spinless deuteron. This is most conveniently done
in the laboratory frame since the convection current of
the whole nucleus is then contained in T00 [18]. Includ-
ing the proton (“dipole”) form factor Gp(q) = ( 1 +
q2/(0.71GeV2) )−2 and neglecting the electron mass one

obtains [19](
dσ

dΩ

)(1+2)

lab

= σMott frecoil

[
F 2

0 (q)G2
p(q)

+
8πe2

Z
F0(q2)Gp (q)q2 Re(TL)

]
. (9)

Here

σMott =
(Ze2)2

4ε2i sin4(Θ/2)
cos2

Θ

2
(10)

is the Mott cross section and

frecoil =
[
1 + 2

εi
Md

sin2 Θ

2

]−1

(11)

the usual recoil factor (Θ denotes the laboratory scattering
angle and Md the deuteron massb). Note that the inter-
ference term involves the real part of TL, i.e the principal
value of the propagators.

It is worthwhile to discuss some special cases of (9):
for potential scattering one should set Md = ∞, Gp = 1
and retain only the elastic part of the generalized struc-
ture function. The second line in (5) then vanishes and
one obtains the expression given by Lewis [21]. The re-
sult from the second-order Born approximation can then
be compared with that from a partial-wave calculation in
which the Dirac equation is solved numerically for each
partial wave; this serves as a check on the accuracy of the
numerical integration. In Fig. 2 the relative difference

∆̄coul =

[ (
dσ

dΩ

)
part

−
(
dσ

dΩ

)
Born

] /(
dσ

dΩ

)
part

(12)

is plotted.
As can be seen, the second-order or “Coulomb cor-

rections” raise the cross section at small scattering angles
from the first-order Born result and then change sign. It is
also seen that the agreement of the second-order Born cal-
culation with the partial-wave cross section is very good
and below the per-mil level, with the remaining wiggles
due to the numerical integration of the 3-dimensional mo-
mentum integral. In principle, one integration (say over
an angle) could have been performed analytically but we
have chosen not to do so since any additional momen-
tum dependence from form factors, recoil terms etc. can
be included easily in our program. The outcome is highly
non-trivial since one has to treat carefully the usual infra-
red singularities of the Coulomb potential and to evaluate
numerically a principal value integral. This was done fol-
lowing the method of [20]. Similar investigations have been

b In kinematical quantities, like recoil factor and momentum

transfer, we employ the exact value Md = 1875.613 MeV. In

dynamical quantities we usually substitute Md = 2M with

M = 938.9 MeV being the nucleon mass
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Fig. 2. Relative difference between the exact partial-wave

cross section and the first and second order Born approxi-

mation for an electron energy of 250 MeV. 2 × 72 Gaussian

points were used for the numerical integration in each dimen-

sion. The charge distribution is the one from the Yamaguchi

NN -potential (see Appendix, (A4)) with β = 286 MeV and no

proton form factor

done long ago with emphasis on particular charge distri-
butions or high-energy approximations [21,22]. Of course,
for a point nucleus, TL can be calculated analytically and
one obtains the well-known correction [23]

dσ(2)

dΩ
= σMott · Ze2π

sin(Θ/2)
1 + sin(Θ/2)

(13)

to the Mott cross section.

3 Dispersion corrections

Turning now to the dispersion corrections for elas-
tic electron-deuteron scattering we need the generalized
structure function SL(q1,q2, ω). In the present work we
employ the simple separable Yamaguchi-potential [24]

V (p,p′) = − λ

M

1
p2 + β2

1
p′2 + β2

(14)

to generate both the elastic form factor and the general-
ized structure function in a consistent and analytic form.
For convenience and further reference we give these ex-
pressions in the Appendix. We have checked them by eval-
uating the sum rule∫ ∞

ω0

dωSinelastic
L (q1,q2, ω)

= F0(q1 − q2)− F0(q1)F0(q2) (15)

numerically from ω0 = 2.2245 MeV to ωmax = 1000 MeV
for different vector values of q1,q2. Excellent agreement
to within 10−5 for (15) was obtained.

Allowing for virtual excitations of the deuteron, a 4-
dimensional integral for the quantity TL in (5) now has to

Fig. 3. Relative dispersion corrections for elastic electron-

deuteron scattering

be evaluated numerically. Again this was done by Gauss-
Legendre integration, usually with 24 points per dimen-
sion. Typical run times were 2 hours per angle on a SUN
SPARC station. We also have checked the numerical ac-
curacy at selected angles by using up to 2× 32 Gaussian
points [19]. Figure 3 shows the relative correction

∆̄disp =

[ (
dσ

dΩ

)
n≥0

−
(
dσ

dΩ

)
n=0

] /(
dσ

dΩ

)
n=0

(16)

to the static cross section obtained at incident electron
energies of 125, 250 and 500 MeV. Proton form factor and
recoil corrections are included in the calculation.

With the strength fixed to reproduce the deuteron
binding energy ω0, there is only one free parameter β
left in the Yamaguchi potential (14). While the original
work [24] fixed it at a value of β = 286 MeV from the ex-
perimental triplet scattering length, a fit to the deuteron
matter radius would require values between 255 and 259
MeV (see also Fig. 7). Here the higher value is associ-
ated with the rms-radius deduced by Sprung and Wu [4]
and the lower value with the one from Martorell et al. [14].
However, from calculations of nuclear polarization shifts in
electronic and muonic atoms one knows that (at least for
very small momentum transfers) the electric dipole polar-
izability αE of the deuteron plays the decisive role. Indeed,
the difference between the calculation in [12] which also
used the Yamaguchi potential and the one in [13] which
employed realistic potentials was mainly caused by too
small a value of the polarizability from Yamaguchi’s orig-
inal β-parameter. Adopting the value αE = 0.6328(17)
fm3 [25] and using the analytical formula (A9) for this
quantity, requires

β = 268MeV. (17)

This value has been adopted in the present calculation,
with results plotted in Fig. 3.

Although this value of β leads to a matter radius of
1.946 fm (which is too low) we do not believe that the rel-
ative correction is very much affected by the inability of
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the Yamaguchi potential to describe both observables pre-
cisely. This is because the elastic electron-deuteron cross
section is smooth and non-diffractive, so that the rela-
tive correction to the static cross section should be pre-
dicted with better accuracy than the cross section itself. Of
course, a calculation with realistic NN -potentials would
avoid these shortcomings but that seems unfeasible and
unnecessary at the moment. It would be more important
to include transverse excitations which should have some
influence at larger scattering angles. Conversely this im-
plies that the dispersion corrections calculated using only
Coulomb excitations cannot be considered as reliable for
too large scattering angles. Including transverse contri-
butions the elastic cross section for unpolarized electron-
deuteron scattering in first order Born approximation is
given by the well-known formula

dσ

dΩ

(1)

= σMott frecoil ·
{
F 2
L + F 2

T

[
1
2

+ tan2

(
Θ

2

)]}
. (18)

In our simplified S-wave description of the deuteron the
transverse elastic form factor is due to the spin current
only and reads [27]

F 2
T (q) =

q2

3M2
µdG

2
p(q)F 2

0 (q) (19)

where µd = µp + µn is the magnetic moment of the
deuteron. Therefore its contribution relative to the charge
scattering is

∆mag =
q2

3M2
µ2
d

[
1
2

+ tan2

(
Θ

2

)]
. (20)

Since we have neglected the transverse form factor we may
take as a rough (and rather arbitrary) criterion for ne-
glecting transverse excitations that the transverse elastic
contribution should be less than 10 % of the Coulombic
part. The corresponding scattering angles are marked by
an arrow in Fig. 3 c.

4 Discussion

It is interesting to compare the dispersion corrections
to the static 2-photon exchange corrections, because [17]
found the Coulomb corrections to be important in their
analysis of measured e−d cross sections. This is shown in
Fig. 4 for an incident electron energy of 500 MeV. It can
be seen that the dispersion corrections are more impor-
tant than static Coulomb corrections for scattering angles

c This does not necessarily imply that transverse excitations

are totally negligible below these scattering angles because

the transverse inelastic structure function at large momentum

transfer is proportional to the incoherent sum µ2
p+µ2

n ' 11.46

of magnetic moments whereas the elastic part is proportional

to the coherent sum (µp + µn)2 ' 0.77.

Fig. 4. Static and non-static two-photon corrections for an

incident electron energy of 500 MeV

Fig. 5. Relative dispersion corrections as a function of the

squared momentum transfer q2 for different electron energies

larger than about 70 degrees. However, in view of the ne-
glected transverse excitations, it is uncertain whether this
would hold for a complete calculation.

As Fig. 3 shows a strong dependence of the calculated
dispersion corrections on electron energy and scattering
angle, it is worthwhile to present them also as a function
of energy and squared momentum transfer. This is done in
Fig. 5 and reveals an approximate linear q2-dependence
for both low and high momentum transfers, albeit with
different slopes. In addition, we observe that for smaller
electron energy (at fixed momentum transfer), larger dis-
persion corrections are obtained than for higher energy.

In order to understand these features qualitatively
we investigate (5) in the limit Md → ∞ where A(+) =
2εi/s2, A(−) = 0 and neglect the second term in the curly
bracket of (5). Furthermore we concentrate on small an-
gle scattering Θ → 0◦. With q1 = pi − p = −q2 we then
obtain

T inelastic
L (Θ = 0) '

∫
d3p

(2π)3

∫
dω
Sinelastic
L (q1,q2, ω)

(p− pi)4

× εi − ω + p · pi/εi
p2 − (εi − ω)2 − i0 . (21)
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Let us assume that all relevant excitation energies ω are
small compared to the incident electron energy εi (this is
borne out below by evaluating the mean average excitation
energy ). After neglecting ω in the last factor of (21) we
can perform the ω-integration by means of the sum rule
(15) and obtain

T inelastic
L (Θ = 0) '

∫
d3p

(2π)3
F0(2(p− pi))− F 2

0 (p− pi)
(p− pi)4

× εi + p · pi/εi
p2 − ε2i − i0

. (22)

This is, of course, the closure approximation with zero
mean excitation energy. Writing k = p−pi, the principal
value integral for the real part of TL can be performed
with the result

Re T inelastic
L (Θ = 0) ' 1

4π2
(23)

×
∫ ∞

0

dk
F0(2k)− F 2

0 (k)
k3

H

(
k

2εi

)
where

H(x) = 2x+ (1− x2) ln
∣∣∣∣1 + x

1− x

∣∣∣∣ . (24)

Note that H(x) ≥ 0, grows for small arguments like 4x,
reaches a maximum at x = 0.8336 and decreases for large
x like 4/(3x). The limit x → 0 is more relevant since the
deuteron form factor restricts the momentum k to be of
the order of its inverse radius 1/R and for the energies of
interest εi ·R >∼ 1. If we adopt this further approximation
we obtain

Re T inelastic
L (Θ = 0) ' 1

εi

1
2π2

∫ ∞
0

dk
1
k2

×
[
F0(2k)− F 2

0 (k)
]

=:
C0

εi
, (25)

(where C0 is a constant) or for the relative change with
respect to the first-order Born approximation

∆closure
disp (Θ → 0) ' 8πe2C0

q2

εi
. (26)

Thus the closure approximation with zero average exci-
tation energy explains the linear q2-dependence at small
scattering angles and the dependence on the incident elec-
tron energy observed in the numerical results. It also pre-
dicts the negative sign of the dispersion corrections: the
constant C0 is negative because the combination of elastic
form factors

F0(2k)− F 2
0 (k) k→0−→ −k

2

3
〈
r2

〉
+ . . . (27)

is negative for small k which contribute most due to
the weighting factor 1/k2 in the integral in (25). Indeed,

a numerical evaluation with the Yamaguchi form factor
(β = 268 MeV) gives C0 = −1.60 · 10−4 MeV−1 which
leads to the simple estimate

∆closure
disp (Θ → 0) ' −1.14

q2[in fm−2]
εi[in MeV]

. (28)

Unfortunately this is only in semi-qualitative agreement
with our exact numerical evaluation of the dispersion cor-
rections as, for example, given in the 8th column of Table
1: Equation (27) overestimates the corrections by a factor
1.5 – 2.5 for the smallest scattering angles.

At this point it is interesting to compare with previous
calculations found in the literature. There are only a few
theoretical investigations of dispersion corrections which
dealt explicitly with the deuteron [28,20]. Among these
the work of Bottino and Ciochetti [20] is the most exten-
sive. These authors use the dipole approximation and a
parametrization of the photo-absorption cross section for
the deuteron to derive nearly energy-independent disper-
sion corrections and a change of less than 1% in the rms-
radius. Roughly their approach corresponds to a (ques-
tionable) substitution of (27) into (24):

Re T inelastic,dipole
L (Θ = 0) ' −

〈
r2

〉
12π2

(29)

×
∫ ∞

0

dx
1
x
H(x) = −

〈
r2

〉
24

which, indeed, is independent of the electron energy. It
leads to a relative correction

∆dipole
disp (Θ → 0) ' −πe

2

3
q2

〈
r2

〉
' −0.035q2[in fm−2] (30)

which is much too large in magnitude (for example at
εi = 80.1 MeV, Θ = 30◦ it overestimates the numeri-
cal result by more than a factor of 4). Since the estimate
(30) only depends on the momentum transfer it would
lead – if taken seriously – to a relative change in the rms-
radius of −πe2/2 ' −1.1% which, however, is unrealistic.
The dipole (or long wavelength) approximation amounts
to approximating the generalized inelastic structure func-
tion by

Sinelastic,dipole
L (q1,q2, ω) ' q1 · q2

σγ(ω)
4π2e2ω

(31)

where σγ(ω) is the photo-absorption cross section which
fulfills the sum rule

∫∞
0
dω σγ(ω)/ω = 4π2e2

〈
r2

〉
/3. This

approximation is only valid for very small incident electron
energies for which εi

〈
r2

〉1/2 ¿ 1. In addition, in [20] the
sign of the correction to the rms-radius seems to be wrong:
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Fig. 6. Average excitation energy ω̄ for which the exact dis-

persion correction are reproduced in closure approximation.

Fluctuations are due to the numerical integration

these authors claim that dispersion corrections increase
the radius which obviously contradicts our resultsd.

Krall and Salpeter, on the other hand, in a very
early paper [28] with rather crude approximations obtain
(mostly) negative dispersion corrections and estimate that
the charge radius of the deuteron decreases by -0.010 fm
which is in at least qualitative agreement with our find-
ings. However, it should be emphasized again that all these
approximations are either invalid or unrealistic for ana-
lyzing measured electron-deuteron cross sections. We con-
clude that at present there is no short-cut and no substi-
tute for the “extremely tedious” [15] numerical integration
over the loop variables.

Finally it is worthwhile to check whether the closure
approximation with a non-zero average excitation energy
would work. For this purpose we have determined for each
scattering angle and for two incident electron energies the
average excitation energy ω̄ in the curly bracket of (5)
which would produce the same results as the exact calcula-
tion. The results are shown in Fig. 6 and clearly show that
ω̄ would have to be a complicated function both of scatter-
ing angle and electron energy. Thus no evaluation of dis-
persion corrections with a fixed average excitation energy
correctly predicts the change in the cross section. Note
that in very forward direction ω̄ is close to the deuteron
binding energy which is the least energy to be transferred

d We see no way how an overall sign error could have oc-

cured in our calculation: As a simple check one can try to

estimate the elastic part of TL(θ → 0) in the same way as

the inelastic part. Then one has to insert F 2
0 > 0 instead of

the form factor combination into (24). Since H(x) is positive

this gives a positive Coulomb correction at small scattering an-

gles in full agreement with Fig. 2 and numerous numerical and

analytical investigations. In the inelastic case F0(2k) − F 2
0 (k)

is dominantly negative as argued above. Negative dispersion

corrections lead to a smaller true radius since the same exper-

imental cross section which contains these effects is (wrongly)

reproduced by a larger radius in a static analysis

in order to excite the target. It is also reassuring that for
small scattering angles these average excitation energies
stay at the order of a few MeV so that kR ¿ 1 and the
use of a potential which only acts in the relative S-wave
is justified a posteriori.

5 Analysis of experimental scattering data
with dispersion corrections

In order to assess the importance of dispersion correc-
tions for the determination of the deuteron radius we now
will analyze experimental electron scattering data at low
momentum transfer. Whereas a rough description of the
electron-deuteron interaction was sufficient to describe the
(small) dispersion corrections we now have to take into ac-
count other effects as well. We will write the e − d cross
section as (see (9))

dσ

dΩ
= σMottfrecoilF

2
0 (q)G2

p(q) [ 1 +∆ ] (32)

and subsume all contributions and corrections which go
beyond the first order Born approximation for a spinless
target into the quantity ∆. (Note that ∆̄i = ∆i/(1 +
∆coul) ' ∆i; i = coul,disp have been plotted in Figs. 2,3.)
We are interested in the body (or matter or point nucleon)
form factor which has the low-q expansion

F0(q) ≡
〈
0 |eiq·r/2| 0

〉
q2→0−→ 1− 1

6
q2r2m + . . . (33)

Meson-exchange and other two-body corrections add a
small correction δrm so that we are actually determining
the radius rEd defined by

r2Ed = r2m + δr2m. (34)

If we substitute (33) into (32) we see that the corrections
induce a change in the radius

δ r2Ed = lim
q→0

∆ · 6
q2

dσ/dΩ

σMott frecoilG2
p

(35)

which has the same sign as the low-q limit of these correc-
tions, i.e. as pointed out before, negative dispersion cor-
rections reduce the radius from its static value.

We will now discuss in more detail the additional cor-
rections which have to be considered for a realistic analysis
of the data. We first recall that the longitudinal part of
the e− d cross section is given by [29–31]

F 2
L = G2

Ed(Q
2) +

Q4

18
G2
Qd(Q

2) (36)

where Q2 = −q2 = q2−q20 ' q2 and GEd(0) = 1 (charge),
GQd(0) = Qd (quadrupole moment)e. The charge form

e In our simplified S-wave deuteron, GQd(Q
2) ≡ 0, of course
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Table 1. Incident energies, scattering angles, four momentum transfers and measured (relative) cross sections from Simon,

Schmitt and Walther [33]. The various corrections ∆i are explained in the text. The ratio R is defined in (43) and used to

extract the deuteron radius

εi [MeV] Θ[◦] Q2 [fm−2] σrel ∆mag ∆quad ∆coul ∆disp R(∆R)

80.1 30 0.044 0.9362 0.0003 0.0000 0.0040 -0.0003 0.9709 (14)

70 0.212 0.7461 0.0023 0.0002 0.0049 -0.0010 0.8836 (19)

75 0.237 0.7197 0.0028 0.0003 0.0048 -0.0012 0.8704 (19)

80 0.263 0.6993 0.0034 0.0003 0.0047 -0.0013 0.8605 (19)

85 0.290 0.6781 0.0042 0.0004 0.0046 -0.0013 0.8498 (21)

90 0.316 0.6543 0.0051 0.0005 0.0044 -0.0014 0.8371 (22)

100 0.368 0.6121 0.0077 0.0006 0.0041 -0.0017 0.8139 (20)

149.4 40 0.263 0.7021 0.0018 0.0003 0.0027 -0.0008 0.8636 (23)

45 0.328 0.6417 0.0024 0.0005 0.0024 -0.0009 0.8320 (27)

50 0.398 0.5928 0.0031 0.0007 0.0021 -0.0010 0.8061 (24)

149.8 40 0.265 0.6984 0.0018 0.0003 0.0026 -0.0008 0.8615 (81)

45 0.330 0.6412 0.0024 0.0005 0.0024 -0.0010 0.8318 (32)

199.5 28 0.236 0.7172 0.0014 0.0003 0.0021 -0.0006 0.8704 (19)

30 0.270 0.6910 0.0017 0.0003 0.0020 -0.0007 0.8578 (24)

35 0.363 0.6254 0.0024 0.0006 0.0017 -0.0005 0.8247 (33)

factor GEd(Q2) is made up of the body form factor F0, the
proton and neutron form factors and the so-called Darwin-
Foldy term:

GEd = 〈0 |ρ(q)| 0〉

=
(
1− q2

8M2

)[
GEp(Q2) +GEn(Q2)

]
F0(q). (37)

This relation can be derived from the well-known non-
relativistic reduction of the electromagnetic current oper-
ator (see, e.g. [32], Appendix D)

ρ̂(q) =
∑
i=p,n

{
F

(i)
1 −

[
q2

8M2
− i

4M2
q · (σi × pi)

]

×
(
F

(i)
1 + 2F (i)

2

)}
eiq·r

′
i +O

(
1
M3

)
(38)

which replaces (3). Here F1/2 are the Dirac/Pauli form
factors and r′i the relative co-ordinates of proton and neu-
tron in the deuteron. It is customary to use the Sachs form
factors

G
(i)
E (Q2) = F

(i)
1 (Q2)− Q2

4M2
F

(i)
2 (Q2) (39)

G
(i)
M (Q2) = F

(i)
1 (Q2) + F

(i)
2 (Q2) (40)

which (in the Breit frame) have a better interpretation as
Fourier transforms of charge and magnetization distribu-
tions. If one neglects the spin-dependent term in (38) (it
vanishes for an S-wave deuteron) one obtains (37) up to
order 1/M2.

We have analyzed the electron scattering data of Si-
mon et al. [33] including static Coulomb and dispersion

correctionsf. We have included all 15 e − d cross sections
with Q2 < 0.4 fm−2 which were measured relative to the
e − p cross sections [35]. In this way the systematic and
normalization errors are much smaller than for an absolute
measurement: we have taken the statistical errors given in
Table 2 of [33] and have added linearly the normalization
error of 0.13% for the ratio (see caption of Table 1 in this
reference).

We then proceeded in the following steps:

1. We have taken out the Mott cross section and the recoil
factor to define

σrel =
dσ

dΩ

/
(σMott frecoil) (41)

which is listed in the 4th column of Table 1.

2. We have corrected for magnetic and quadrupole con-
tributions by using (20) with the experimental value
µd = 0.85741 and

∆quad =
q4

18
Q2
d (42)

with Qd = 0.2859 fm2. The value of these corrections
are given in the 5th and 6th column of Table 1, respec-
tively and seen to be small or even tiny in the case
of quadrupole scattering. Static Coulomb corrections
have been calculated either in the second Born approx-
imation (as a by-product of the dispersion corrections)
or by a partial-wave code. In the latter case the Yam-
aguchi density (A4) with β = 254 MeV was folded with

f The data of Berard et al. [34] could not be used since the

published cross sections are only given as function of Q2
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Fig. 7. Matter radius rm, dipole polarizability αE and asymp-

totic normalization AS relative to their experimental value

(1.967 fm, 0.6328 fm3, 0.8845, respectively) as a function of

the Yamaguchi parameter β (left hand scale). Also plotted is

the exponent γ defined in (45) (right hand scale)

the proton and neutron form factors (parametrizations
from [35,36]) plus the Darwin-Foldy term so that a
charge radius of 2.129 fm was obtained. Recoil correc-
tions were taken into account by transforming into the
center-of-mass system [37,38]. The resulting Coulomb
corrections are listed in the 7th column of Table 1 and
are in good agreement with the second-order Born re-
sult. Finally we have calculated the relative dispersion
correction for each scattering energy and scattering an-
gle as discussed before.

3. We then have determined the ratio of deuteron charge
form factor to proton charge form factor

R(q2) ≡ GEd
GEp

=
√

σrel
1 +

∑
i∆i

/
GEp,

i = mag, quad, coul,disp (43)

using the four-pole fit of GEp given in [35] which de-
scribes the e−p cross section measured at Mainz. These
data have been confirmed to the 1%-level by indepen-
dent measurements at Saclay (see Fig. 2 in [36]). The
last column in Table 1 lists the values ofR(q2) together
with the associated error (statistical + normalization
error).

4. We now follow the procedure of Klarsfeld et al. [1]: The
ratio R(q2) is the body form factor of the deuteron
still folded with the neutron charge density and the
Darwin-Foldy correction. It thus has the low-q expan-
sion

R(q2) = 1− 1
6
q2 r2x +

1
120

q4 r4y + . . . (44)

from which we could determine the root-mean-square
radius rx by plotting R(q2) vs. q2. Klarsfeld et al.

Fig. 8. Deuteron radius rx as function of Q2 extracted from

the 15 experimental e− d cross sections listed in Table 1. The

squares, triangles, full dots and open circles denote the 80.1,

149.4, 149.8 and 199.5 MeV data, respectively. The average is

indicated by the dashed line

have found that plotting the inverse of R gives rise to
a more linear behaviour. This is easily improved by
considering R−γ and demanding that the O(q4)-term
vanishes completely. In this way one determines

γ =
3
5
r4y
r4x
− 1 ' 3

5

〈
r4

〉
〈r2〉2

− 1 (45)

where 〈rn〉 are the moments of the matter density.
With the Yamaguchi density (A4) one finds 1.25 <
γ < 1.35 in a wide range of β-values (see Fig. 7) and
we adopt γ = 1.3 in our analysisg Thus

rx =

√
6
q2

R−γ − 1
γ

(46)

should be nearly constant as function of q2 and directly
gives the radius rx. This is indeed the case as can be
seen in Fig. 8.

The weighted average of rx is given in Table 2 for an anal-
ysis including Coulomb and dispersion corrections. In all
cases a good fit was achieved: the slightly lower χ2 with
no corrections is irrelevant. However, Sick and Trautmann
[17] who analyzed a much greater set of data found a
significant improvement of the fit when Coulomb correc-
tions were applied. Also the outcome of the fit is stable
if, for example, only the data with Q2 < 0.3 fm−2 are

g As Donald Sprung has pointed out to us, this fixes the q4

coefficient in terms of rx and leads to an underestimate of the

error in the radius. However, for the very small momentum

transfers which we analyze here, this is not expected to have

great influence
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Table 2. Deuteron radii extracted from the low-q data from Mainz [33]

rx [fm] χ2/dof rEd [fm] rch [fm]

uncorrected 1.9379 (41) 0.68 1.9584 (41) 2.1209 (87)

with Coulomb corrections 1.9508 (57) 1.00 1.9716 (56) 2.1327 (101)

with Coulomb and 1.9473 (55) 0.93 1.9682 (54) 2.1296 (99)

dispersion corrections

analyzed: with Coulomb and dispersion corrections one
obtains rx = (1.9506± 0.0079) fm which is fully compat-
ible with the result given in Table 2. We also have listed
the radius

r2Ed = r2x − r2n −
3

4M2
(47)

obtained from (37) with the value r2n = (−0.115 ± 0.004)
fm2 [39]. Our result (including Coulomb and dispersion
corrections)

rEd = 1.968(6)fm (48)

is in very good agreement with a value derived from sys-
tematics of the most recent NN -potential models and
the deuteron asymptotic normalization, 1.967 (2) fm [7].
If one adds an estimate for the meson-exchange correc-
tions and the small spin-orbit contribution, the theoretical
value is raised to 1.971 (2) fm [7] which is still compatible
with our result (48). In contrast the value 1.9753 (11) fm
from atomic laser spectroscopy is much more precise but
slightly higher. Finally we add quadratically the proton
radius rp = 0.862(12) fm to obtain the charge radius of
the deuteron (including Coulomb and dispersion correc-
tions)

rch = 2.130(10)fm. (49)

Here the increased error is due to the larger uncertainty
in the proton charge radius. Table 2 also shows that the
inclusion of Coulomb corrections raises the charge ra-
dius by 0.012 fm in very good agreement with the re-
sult of Sick and Trautmann [17] who analyzed the world
data over a much wider range of Q2-values and obtained
rch = 2.128(11) fm. Our dispersion corrections partially
compensate this increase by a reduction of 0.003 fm which
is well within the overall uncertainty.

6 Summary

In conclusion, we have evaluated dispersion corrections to
elastic electron-deuteron scattering, avoiding for the first
time several commonly used drastic approximations. This
was achieved by summing explicitly over all excited states
of the proton-neutron system in the continuum with the
correct weight and using a simple, phenomenological NN -
potential. We have shown that neither the closure approxi-
mation nor the long wavelength approximation are able to

reproduce quantitatively the exact results obtained by nu-
merical integration. Contrary to naive expectations based
on the fact that the deuteron is a loosely bound and easily
polarizable nuclear system, our dispersion corrections turn
out to be small – much less in magnitude than given by the
few previous estimates in the literature. In addition, the
corrections are definitely negative, i.e. the non-static cross
section is smaller than the one calculated without disper-
sion corrections. This means that the true rms-radius is
smaller than the one obtained by analyzing the scattering
data in a static framework. This was born out quanti-
tatively by analyzing the experimental cross sections by
Simon et al. at low momentum transfer where our results
are deemed to be most reliable. We found that the de-
crease in the matter (or charge) radius of the deuteron
due to the inclusion of dispersion corrections is about 2 -
3 times smaller than the present experimental error and
that it does not remove the slight disagreement between
the values derived from electron scattering and laser spec-
troscopy.

Although we believe that our calculation of disper-
sion corrections is a substantial step forward in controlling
these corrections, it could be improved in several respects:

a) Inclusion of transverse virtual excitations within our
simple S-wave model of the deuteron.

b) Inclusion of the D-wave component, i.e. the tensor
force in a separable potential [40].

c) Calculation with a realistic potential.

As the deuteron dispersion corrections are rather small
and in view of the complexity of the numerical calculation
(which roughly is one to two orders of magnitude larger
than a calculation of the nuclear polarization shift) it is
probably the best strategy to concentrate on point a) , i.e.
to include transverse excitations within the simplified S-
wave model. This seems a fairly straightforward extension
of our present calculations and is left for the future.

We thank Joan Martorell for very helpful comments and sug-

gestions which were instrumental to the analysis of the elec-

tron scattering data and for information about the theoretical

status of the deuteron radius. Donald Sprung raised pertinent

questions and carefully read a first draft of this paper for which

we are very grateful. We are also indebted to Valeri Markushin

for a critical reading of the manuscript.
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Appendix A Generalized structure function for
the Yamaguchi potential

The Schrödinger equation can be solved analytically for
the separable Yamaguchi potential, giving the ground
state wave function of the deuteron

ψ0(p) =
N

(α2 + p2)(β2 + p2)
. (A1)

Here α =
√
Mω0 = 45.701 MeV and p = |p|. The normal-

ization
∫
d3p |ψ0(p)|2 = 1 requires

N2 =
αβ

π2
(α+ β)3. (A2)

The wave function in r-space has the Hulthén form

ψ0(r) =
√
π

2
N

β2 − α2

1
r

(
e−αr − e−βr

)
(A3)

and the ground state density is given by

ρ(r) = 8 |ψ0(2r)|2 =
πN2

(β2 − α2)2
1
r2
×

×
(
e−2αr − e−2βr

)2
. (A4)

The elastic (body) form factor is easily found to be

F0(q) =
4π2N2

(β2 − α2)2
1
q

(A5)

× arctan
{

4(α+β)(β−α)2q
[4α(α+β)+q2/2][4β(α+β)+q2/2]+(β−α)2q2

}
.

For convenience we list the analytical expressions for the
moments of the density (A4)

〈rn〉 = n!
αβ

22n

(α+ β)3

(β2 − α2)2

×
[

1
αn+1

+
1

βn+1
− 2n+2

(α+ β)n+1

]
, (A6)

the asymptotic normalization

AS =
√

2αβ
(α+ β)3/2

β2 − α2
(A7)

and the electric dipole polarizability [26]

αE =
e2

96
M

α4β2(α+ β)3
(A8)

×
[
3β5 + 18β4α+ 51β3α2 + 96β2α3 + 48βα4 + 8α5

]
.

The inelastic part of the generalized longitudinal struc-
ture function is obtained from the analytic solution of the
full Green function ash

SL
inelastic(q1 ,q2 , ω ) = Sfree −

1
π

(A9)

×Im
{
λM

1
1 + λC(ω + ω0)

D(ω + ω0, q1)D(ω + ω0, q1)
}

h For details see [19]

with

C(k) =
π2

β ( k + i β )2
(A10)

D(k, q) =
πN

α2 − β2

1
q

{
I(k, q, α, β)− I(k,−q, α, β)

+I(k,−q, β, β)− I(k, q, β, β)
}
. (A11)

Here k2 = M(ω + ω0), λ = β(β + α)2/π2 and

I( k , q , α , β ) =
π i

k2 + β2
(A12)

× ln
[
α2 + (k + q

2 )2

α2 + (i β + q
2 )2

β2 + (iα− q
2 )2

−k2 + (i α− q
2 )2

]
.

By means of partial fractions the non-interacting part

Sfree =
∫
d3pψ0

(
p− q2

2

)
×ψ0

(
p− q1

2

)
δ

(
ω + ω0 −

p2

M

)
(A13)

can be reduced to

Sfree = M N2 1
(β2 − α2)2

(A14)

× [J(α, α )− J(α, β )− J(β, α ) + J(β, β )]

with

J( a, b ) =
∫
d3p

1
a2 + (p− q1/2)2

× 1
b2 + (p− q2/2)2

δ(k2 − p2). (A15)

Combining the denominators with the Feynman proce-
dure, the integral J(a, b) can be finally brought into the
form

J(a, b) = 2πk
∫ 1

0

dx
1

Ax2 +Bx+ C
, (A16)

which has standard analytical solutions in terms of ele-
mentary functions depending on the values of the param-
eters

A =
(
a2 − b2 +

q21
4
− q22

4

)2

− k2 (q1 − q2)
2

B = 2
(
a2 − b2 +

q21
4
− q22

4

)
×

(
b2 +

q22
4

+ k2

)
− 2 k2 q2 · (q1 − q2) (A17)

C =
(
b2 +

q22
4

+ k2

)2

− k2 q22 .
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